热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

中点|假定_shader数学基础之顶点法向量从物体坐标系变换到世界坐标系

篇首语:本文由编程笔记#小编为大家整理,主要介绍了shader数学基础之顶点法向量从物体坐标系变换到世界坐标系相关的知识,希望对你有一定的参考价值。原文:

篇首语:本文由编程笔记#小编为大家整理,主要介绍了shader数学基础之顶点法向量从物体坐标系变换到世界坐标系相关的知识,希望对你有一定的参考价值。



原文:http://www.cnblogs.com/bluebean/p/5297793.html



顶点法向量从物体坐标系变换到世界坐标系

 3维网格模型的顶点的法向量一开始是定义在模型坐标系中的,在将模型布置在场景中后,根据光照模型计算颜色时需要用到顶点法向量,由于光照都是在世界坐标系中进行计算,这时用到的法向量也应该是定义在世界坐标系中。所以我们需要设法将顶点法向量从模型坐标系中转换到世界坐标系中。

我们已经知道通过缩放、旋转、平移三种基本操作合成的model矩阵可以将网格顶点坐标从模型坐标系中转换到世界坐标系中。那么这个model矩阵是否也可以将顶点法向量转换到世界坐标系呢?如果不行,那么需要找到一个可以完成这个任务的矩阵。

1.model矩阵是否可以用于转换法向量

答案:不行

 

如图所示:图中的线段AB经过了缩放变换。上图中点A=(0,1) B=(1,0),法向量N=(1,1);下图中经过y坐标值放大两倍的变换后,法向量N=(1,2),而向量T=A-B=(-1,2),法向量N’不再与线段AB垂直。

 

注:平移和选择变换并不会改变法向量与线段的垂直关系。

 

2.寻找用于变换法向量的通用矩阵

2.1 证明一个多边形的切向量经过model矩阵的变换后也是变换后的平面的切向量

 

如图:多边形的其中三个顶点是A,B,C,则多变形的任意一个切向量可以表示为:

T=a*(B-A)+b*(C-A) 

a,b不同时为零

model矩阵为M

所以经过变化后

T=M*T=a*(M*B-M*A)+b*(M*C-M*A)=a*(B’-A’)+b*(C’-A’)

所以经过model矩阵变化的切向量也是变换后的多边形的切向量

 

2.2 求解

设:在模型空间中,网格的某个三角面的切向量为t,法向量为n.

经过模型矩阵M的变换后,t’=Mt,t’仍是变换后的三角面的切向量。假定存在矩阵N,使用N变换法向量n,得到n’=Nn,使得n’是正确的世界坐标系中的法向量。N即是我们所要寻求的矩阵。

法向量垂直于切向量,所以有:

 

所以
N
是模型矩阵的逆矩阵的转置。
推荐阅读
  • 如何在WPS Office for Mac中调整Word文档的文字排列方向
    本文将详细介绍如何使用最新版WPS Office for Mac调整Word文档中的文字排列方向。通过这些步骤,用户可以轻松更改文本的水平或垂直排列方式,以满足不同的排版需求。 ... [详细]
  • 本文介绍了一款用于自动化部署 Linux 服务的 Bash 脚本。该脚本不仅涵盖了基本的文件复制和目录创建,还处理了系统服务的配置和启动,确保在多种 Linux 发行版上都能顺利运行。 ... [详细]
  • 如何在窗口右下角添加调整大小的手柄
    本文探讨了如何在传统MFC/Win32 API编程中实现类似C# WinForms中的SizeGrip功能,即在窗口的右下角显示一个用于调整窗口大小的手柄。我们将介绍具体的实现方法和相关API。 ... [详细]
  • 360SRC安全应急响应:从漏洞提交到修复的全过程
    本文详细介绍了360SRC平台处理一起关键安全事件的过程,涵盖从漏洞提交、验证、排查到最终修复的各个环节。通过这一案例,展示了360在安全应急响应方面的专业能力和严谨态度。 ... [详细]
  • 几何画板展示电场线与等势面的交互关系
    几何画板是一款功能强大的物理教学软件,具备丰富的绘图和度量工具。它不仅能够模拟物理实验过程,还能通过定量分析揭示物理现象背后的规律,尤其适用于难以在实际实验中展示的内容。本文将介绍如何使用几何画板演示电场线与等势面之间的关系。 ... [详细]
  • 本文介绍如何在应用程序中使用文本输入框创建密码输入框,并通过设置掩码来隐藏用户输入的内容。我们将详细解释代码实现,并提供专业的补充说明。 ... [详细]
  • RecyclerView初步学习(一)
    RecyclerView初步学习(一)ReCyclerView提供了一种插件式的编程模式,除了提供ViewHolder缓存模式,还可以自定义动画,分割符,布局样式,相比于传统的ListVi ... [详细]
  • 使用 Azure Service Principal 和 Microsoft Graph API 获取 AAD 用户列表
    本文介绍了一段通用代码示例,该代码不仅能够操作 Azure Active Directory (AAD),还可以通过 Azure Service Principal 的授权访问和管理 Azure 订阅资源。Azure 的架构可以分为两个层级:AAD 和 Subscription。 ... [详细]
  • 解决PHP与MySQL连接时出现500错误的方法
    本文详细探讨了当使用PHP连接MySQL数据库时遇到500内部服务器错误的多种解决方案,提供了详尽的操作步骤和专业建议。无论是初学者还是有经验的开发者,都能从中受益。 ... [详细]
  • Android 渐变圆环加载控件实现
    本文介绍了如何在 Android 中创建一个自定义的渐变圆环加载控件,该控件已在多个知名应用中使用。我们将详细探讨其工作原理和实现方法。 ... [详细]
  • 在Ubuntu 16.04 LTS上配置Qt Creator开发环境
    本文详细介绍了如何在Ubuntu 16.04 LTS系统中安装和配置Qt Creator,涵盖了从下载到安装的全过程,并提供了常见问题的解决方案。 ... [详细]
  • 尽管某些细分市场如WAN优化表现不佳,但全球运营商路由器和交换机市场持续增长。根据最新研究,该市场预计在2023年达到202亿美元的规模。 ... [详细]
  • 将Web服务部署到Tomcat
    本文介绍了如何在JDeveloper 12c中创建一个Java项目,并将其打包为Web服务,然后部署到Tomcat服务器。内容涵盖从项目创建、编写Web服务代码、配置相关XML文件到最终的本地部署和验证。 ... [详细]
  • JavaScript中属性节点的类型及应用
    本文深入探讨了JavaScript中属性节点的不同类型及其在实际开发中的应用,帮助开发者更好地理解和处理HTML元素的属性。通过具体的案例和代码示例,我们将详细解析如何操作这些属性节点。 ... [详细]
  • 如何高效创建和使用字体图标
    在Web和移动开发中,为什么选择字体图标?主要原因是其卓越的性能,可以显著减少HTTP请求并优化页面加载速度。本文详细介绍了从设计到应用的字体图标制作流程,并提供了专业建议。 ... [详细]
author-avatar
自由风纪战_951
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有